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Abstract. Areas of thin sea ice in the polar regions not only
are experiencing the highest rate of sea-ice production but
also are, therefore, important hot spots for ocean ventilation
as well as heat and moisture exchange between the ocean
and the atmosphere. Through co-location of (1) an unsu-
pervised waveform classification (UWC) approach applied
to CryoSat-2 radar waveforms with (2) Moderate Resolu-
tion Imaging Spectroradiometer-derived (MODIS) thin-ice-
thickness estimates and (3) Sentinel-1A/B synthetic-aperture
radar (SAR) reference data, thin-ice-based waveform shapes
are identified, referenced, and discussed with regard to a
manifold of waveform shape parameters. Here, strong lin-
ear dependencies are found between binned thin-ice thick-
ness up to 25 cm from MODIS and the CryoSat-2 wave-
form shape parameters that show the possibility of either de-
veloping simple correction terms for altimeter ranges over
thin ice or directing adjustments to current retracker algo-
rithms specifically for very thin sea ice. This highlights the
potential of CryoSat-2-based SAR altimetry to reliably dis-
criminate between occurrences of thick sea ice, open-water
leads, and thin ice within recently refrozen leads or areas
of thin sea ice. Furthermore, a comparison to the ESA Cli-
mate Change Initiative’s (CCI) CryoSat-2 surface type clas-
sification with classes sea ice, lead, and unknown reveals
that the newly found thin-ice-related waveforms are divided
up almost equally between unknown (46.3 %) and lead type
(53.4 %) classifications. Overall, the UWC results in far
fewer unknown classifications (1.4 % to 38.7 %). Thus, UWC
provides more usable information for sea-ice freeboard and
thickness retrieval and at the same time reduces range biases

from thin-ice waveforms processed as regular sea ice in the
CCI classification.

1 Introduction

Areas of thin-sea-ice cover in the polar regions play an im-
portant role for sea-ice production and heat exchange of the
ocean with the atmosphere – especially during polar night
(e.g. Meier et al., 2014; Morales Maqueda et al., 2004;
Maykut, 1978; Thorndike et al., 1975). Several studies in-
vestigated the presence of thin sea ice in leads and polynyas
within the Arctic (e.g. Rothrock et al., 1999; Preußer et al.,
2016, 2019; Tian-Kunze et al., 2014; Huntemann et al., 2014;
Willmes et al., 2010; Willmes and Heinemann, 2015, 2016;
Reiser et al., 2020). Leads and polynyas are openings of vary-
ing size and shape within the sea-ice scape and per defini-
tion of the World Meteorological Organization (WMO) may
consist of not only open-water areas but also thin ice with a
thickness of up to 30 cm (WMO, 2014). The studies investi-
gating thin ice use different sensors and retrieval methodolo-
gies that are generally bound to an upper sea-ice-thickness
limit and methodological limitations (e.g. snow cover and/or
cloud-cover presence when using thermal-infrared data (e.g.
Yu and Rothrock, 1996; Frey et al., 2008) or spatial res-
olution using passive-microwave data (e.g. Tamura et al.,
2008)).

In contrast, satellite altimetry is capable of retrieving sea-
ice freeboard and sea-ice thickness for the Arctic on a basin
scale using CryoSat-2 and its predecessor sensors, with sev-
eral data products already available (e.g. Landy et al., 2019;
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Paul et al., 2018; Guerreiro et al., 2017; Kurtz et al., 2014).
However, studies suggest a higher uncertainty towards thin-
ner sea ice (Ricker et al., 2017). This is the result of several
factors. The radar backscatter characteristics between young
and thin sea ice is ambiguous with open-water area, since
both surfaces have specular reflection properties that lead to
off-nadir reflection biasing the radar range (e.g. Aldenhoff
et al., 2019; Passaro et al., 2018; Rinne and Similä, 2016).
However, classifying radar waveform echoes by their respec-
tive backscattering surface type (i.e. sea ice, open ocean, or
leads) is essential for the upstream process of retrieving sea-
ice freeboard and sea-ice thickness using satellite radar al-
timetry (e.g. Laxon, 1994; Laxon et al., 2003; Peacock and
Laxon, 2004). Numerous studies exist on the automatic de-
tection of leads. These use altimeter data (e.g. Lee et al.,
2018; Dettmering et al., 2018; Wernecke and Kaleschke,
2015) or synthetic-aperture radar (SAR) images (e.g. Park
et al., 2020; Murashkin et al., 2018). A lead in the context
of radar altimetry is an ice-free opening surrounded by sea
ice that enables direct measurements of sea-surface height
within the ice cover. However, none of the existing studies
have yet attempted to detect thin ice using satellite altimetry
data. Continuous sea-surface height observations over open
ocean and at discrete lead locations are then interpolated
along the track, and one can subsequently calculate the sea-
ice freeboard (i.e. the instantaneous height differences be-
tween the sea-ice surface and the ocean surface). Assuming
hydro-static equilibrium and utilizing additional auxiliary in-
formation on sea-ice type and respective sea-ice density, as
well as information on the sea-ice snow cover, one can calcu-
late the sea-ice thickness (e.g. Paul et al., 2018; Alexandrov
et al., 2010).

For correct sea-ice classifications, the small freeboard val-
ues of thin ice (here defined as sea ice with a thickness up to
25 cm) are often lower than the precision of even the recent
synthetic-aperture radar (SAR) altimeter sensors. In addition,
freeboard estimates of sea ice from Ku-band radar altimeters
must be adjusted for a lower wave propagation speed in the
snow layer (Mallett et al., 2020). In the absence of a direct
observation for each radar altimeter waveform, snow depth
and density information may originate from a climatology,
modelled snow depth with reanalysis as input, or data fu-
sion of different satellite sensors. However, all approaches
provide an average snow depth for a certain period and re-
gion, which will overestimate the snow layer on young sea
ice in most cases and create a freeboard bias. Hence, there
is currently a need for additional satellite products or physi-
cal waveform models to better understand retrievals based on
radar altimeter waveforms over thin-ice areas to complement
improvements for thicker and rougher sea-ice surfaces (e.g.
Landy et al., 2019).

While information on the presence of thin-ice areas is
important for our understanding of sea-ice mass balance
changes, there are currently only two operational Arctic-wide
thin-ice data products available due to the above-mentioned

limitations. These products are both produced from ESA’s
Soil Moisture and Ocean Salinity (SMOS) mission (Hunte-
mann et al., 2014; Tian-Kunze et al., 2014) based on the ice-
thickness dependency of surface emissivity at the L band.
However, this is at a lower spatial resolution of 12.5km×
12.5km at best (Tian-Kunze et al., 2014). Both methods
are limited for thicker sea ice above 0.5 m (Huntemann et
al., 2014) or 1 m (Tian-Kunze et al., 2014), respectively.
Thus, the latter product, as an official ESA product, is rou-
tinely used to improve sea-ice-thickness retrieval over the full
range of the sea-ice-thickness distribution utilizing a data fu-
sion approach between SMOS and CryoSat-2 using optimal
interpolation (Ricker et al., 2017). Data products utilizing
thermal-infrared data to estimate thin-ice thickness and cor-
responding areas are also available but not in a similar oper-
ational fashion (e.g. Preußer et al., 2016, 2019).

In this study, the authors utilize delay-Doppler radar al-
timeter echoes from ESA’s Earth Explorer mission CryoSat-
2 in combination with the capabilities of NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS) to allow
for a better understanding of the received CryoSat-2 wave-
form returns over thin-sea-ice areas and, subsequently, an
improved surface type classification. For this task, the au-
thors intercompare CryoSat-2 waveforms labelled as thin ice
through an unsupervised classification approach (extended
from Müller et al., 2017) with thin-ice-thickness estimates
from MODIS (Paul et al., 2015) within a maximum of 30 min
between both acquisitions. Additionally, in Sect. 4.3 (“Clas-
sification comparison”), the authors show a statistical analy-
sis of the results obtained by the unsupervised classification
approach (Müller et al., 2017) and the classification used in
the ESA Climate Change Initiative (CCI) described in Paul
et al. (2018).

All investigations are performed for the Arctic Laptev Sea
region featuring frequent occurrences of flaw and coastal
polynyas, i.e. polynyas bound to fast ice or the coast, respec-
tively (Fig. 1; e.g. Preußer et al., 2019; Willmes et al., 2010),
and cover the winter months January through March between
2011 and 2020.

This study is structured into the following sections. Sec-
tion 2 describes the data sets; Sect. 3 provides details on the
unsupervised clustering for CryoSat-2 and the MODIS thin-
ice-thickness retrieval. Section 4 summarizes and discusses
the results and implications on CryoSat-2 surface type clas-
sification, and Sect. 5 concludes with an outlook.

2 Data sets and preprocessing

The following subsection highlights the main data sets used
for this study. All analyses are carried out for the Arctic
Laptev Sea region between 70–85◦ N, 92–142◦ E (Fig. 1) for
the winter months January through March between 2011 and
2020.
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Figure 1. Overview of the study area within the Arctic Laptev Sea
region (a; orange outline). Small rectangles within the map inlet (b)
mark the locations of case studies used in this study (see Figs. 4–6).

2.1 CryoSat-2 Level-1B Baseline-D data

CryoSat-2 was launched in April 2010 aiming to monitor
Earth’s cryosphere and, in particular, to measure the decline
in land and sea ice in the polar regions in order to under-
stand the role of climate in the retreat of polar ice. CryoSat-2
was placed on a non-Sun-synchronous orbit with a long re-
peat orbit of about 369 d. CryoSat-2 is carrying a Ku-band
radar altimeter and is observing in three different acquisition
modes up to a latitude of 88◦ N/S (Scagliola, 2013). The ac-
quisition modes vary with application area and surface type
with respect to a geographical mode mask (for more infor-
mation, see https://earth.esa.int/eogateway/instruments/siral/
description, last access: 14 February 2023).

The polar seas are predominantly sampled by the
synthetic-aperture radar (SAR) mode with an along-track
footprint size of about 300 m (Wingham et al., 2006). Briefly
summarized, the SAR mode combines frequency-shifted
radar returns (i.e. Doppler effect) in the direction of flight
from different look angles with respect to a predefined posi-
tion on the surface. The result of combining different view
angles is called a multi-look waveform and samples the sur-
face with 20 Hz resolution.

The present investigation is based solely on SAR-mode-
acquired multi-looked waveforms, covering major parts of
the Arctic Ocean. In particular, CryoSat-2 Level-1B (L1B)
Ice Baseline-D data are introduced to the processing chain.
This data set comprises, in addition to the waveform data,
information on waveform scaling as well as orbit positions.

More information regarding Baseline-D can be found in the
ESA CryoSat-2 Product Handbook (Bouzinac, 2019) and
Meloni et al. (2020).

2.2 MODIS data

For the comparison of thin-ice thickness to CryoSat-2 wave-
forms, MODIS Level-1B-calibrated radiances are obtained
from both NASA satellites, Terra and Aqua (MOD/MYD02;
MCST, 2017a, b), retrieved from the Level-1 and Atmo-
sphere Archive and Distribution System (LAADS) Dis-
tributed Active Archive Center (DAAC) with a spatial resolu-
tion of 1km×1km at nadir and swath dimensions of 1354 km
(across track) × 2030 km (along track).

Brightness temperatures were calculated from the cali-
brated radiances comprising MODIS channels 31 and 32 at
10.78 to 11.28 µm and 11.77 to 12.27 µm, respectively, fol-
lowing Toller et al. (2017). Subsequently, the sea-ice surface
temperature (IST) was computed following Riggs and Hall
(2015). All MODIS processing is based on MODIS Collec-
tion 6.1 data for nighttime only.

In order to compute corresponding thin-ice-thickness data
from the IST data, additional data on the prevailing at-
mospheric conditions are necessary. Here, all necessary
atmospheric fields are provided from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) fifth-
generation reanalysis (ERA5) data acquired from the Coper-
nicus Climate Data Store (CDS; Hersbach et al., 2020).
These fields comprise the 2 m air temperature, the 10 m wind-
speed components, the mean sea-level pressure, and the 2 m
dew-point temperature in hourly resolution.

2.3 Sentinel-1A/B SAR images

The ESA Copernicus C-band SAR missions Sentinel-1A and
Sentinel-1B (S1-A/B) were launched in 2014 and 2016, re-
spectively. At the time of full functionality, both satellites
orbited Earth 180◦ apart to provide SAR imagery, unaffected
by cloud cover, on a 6 d repeating cycle. SAR images from
both missions are used for visual comparisons. Automatic
thin-ice detection from SAR images is not applied in this
study because this falls outside the main focus of the work.
S1-A/B features a higher spatial resolution with regard to
MODIS and, therefore, provides further information about
different sea-ice surface types by making use of the backscat-
tering properties of different surfaces. For instance, leads and
polynyas appear very dark due to a very flat and less rough
surface. In this case the incoming radar signal is scattered
away from the receiver. However, caution must be taken by
the interpretation of the backscattering pixel values in the
presence of small-scale features like frost flowers (i.e. small
ice crystals with the size of a few centimetres in diameter)
that develop under cold and calm conditions, e.g. on nilas
ice, as they can significantly increase the scattering resulting
in brighter pixel values (Hollands and Dierking, 2016). Fur-
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thermore, brighter pixel values can also result from a rough-
ened water surface due to strong wind influence in polynyas.
More information regarding sea-ice surface type interpreta-
tion can be found in Dierking (2013) and Murashkin et al.
(2018).

In the present study, the Sentinel-1 comparison data set
consists of Level-1 dual-polarized SAR extra-wide-swath
mode data at medium resolution. The images are ground
range detected and show a pixel resolution of 40m× 40m
and a swath width of 400 km. The spatial resolution is close
to 100 m. The images are processed using SNAP (ESA Sen-
tinel Application Platform) v8.0 (http://step.esa.int, last ac-
cess: 14 February 2023) following the processing steps de-
scribed in Müller et al. (2017) and Passaro et al. (2018)
but with an additional speckle filtering. Briefly summarized,
the main processing steps follow standard routines (e.g. ra-
diometric calibration, speckle filtering, map projection). The
Level-1 data are gathered from the Alaska Satellite Facility
Data Active Archive Center (ASF DAAC). In terms of the
study area and period, the Sentinel-1A/B image pool repre-
sents a potentially usable size of approximately 500 scenes.
Unfortunately, Sentinel-1B was decommissioned after an in-
strument failure in December 2021.

3 Methods

The following section focuses on the key steps of data pro-
cessing that enable a comparison of thin-ice observations
from SAR altimetry and MODIS thermal-infrared imagery.
In order to reduce the influence of rapidly changing envi-
ronmental conditions such as sea-ice drift, rapid melt, and
freezing periods, the maximum time gap between altime-
try, thermal-infrared imagery, and SAR imaging is set to
±30 min around the overflight times of CryoSat-2. This is a
compromise to minimize observation situation changes while
at the same time enabling a sufficiently large MODIS as well
as SAR image database. This is necessary due to the frequent
presence of cloud cover in the MODIS data. After setting a
maximum permissible acquisition time difference between
CryoSat-2 and Sentinel-1A/B, the number of possible SAR
images is reduced to 52. Other limiting factors concern the
actual number of overlap points in the image area. The im-
ages shown in Sect. 4.1 correspond to examples with a very
good overlap and different surface conditions.

From ERA5 2 m air temperature data, the average temper-
atures for the study period and region are always well below
the freezing point (about 253 K on average; Fig. 1). However,
there are rare occasions of temperatures above the freezing
point (about 1.6 % of all days within the study period) espe-
cially over land but also near the coast over sea-ice/fast-ice
areas. While certainly the surface conditions change under
these conditions and potentially impact the received returns
for CryoSat-2, the overall impact on the unsupervised wave-
form classification (UWC) is considered negligible.

The MODIS comparison database includes 161 scenes,
which corresponds to an altimetry data set of about 21 300
CryoSat-2 altimeter waveforms (MODIS scene numbers and
their time difference from the CryoSat-2 tracks are available
upon request).

3.1 CryoSat-2 thin-ice classification

Müller et al. (2017) developed an unsupervised classification
of altimeter waveforms that was primarily focused on the de-
tection of open-water targets, such as leads and polynyas,
without the use of training data or previously known infor-
mation about the surface conditions. The classification can
be applied to any kind of altimeter waveforms and mis-
sions. Müller et al. (2017) applied it to the non-SAR, con-
ventional altimeter missions Envisat and SARAL (Satellite
with ARgos and ALtiKa). Later, the classification approach
was adopted to SAR altimeter waveforms (Dettmering et
al., 2018) and applied to CryoSat-2 and Sentinel-3A/B in
the framework of the European Space Agency’s Baltic+ Sea
Level (ESA Baltic SEAL) project (Passaro et al., 2021).
However, none of these studies classified thin ice, since al-
timeter waveforms generated by this surface type are quite
similar to open-water returns.

Briefly summarized, the unsupervised waveform classifi-
cation (UWC) is based on an automatic clustering of a broad
spectra of different waveforms by K-medoids classification
(e.g. Celebi, 2014) defining a reference model with a certain
number of clusters. After clustering, an assignment of the
clustered waveforms as well as remaining waveforms to cer-
tain surface types (e.g. ocean, lead/polynya, or sea-ice con-
ditions) is performed. The assignment of the waveform clus-
ters to the different surface types is mainly based on the use
of background knowledge about the physical backscattering
properties of the individual surface types and statistical re-
lationships (Fig. 2). More detailed explanations of the clus-
ter assignment can be found in Müller et al. (2017). In the
present investigation, the cluster number is set to 25. This
number was found to produce optimal results in Dettmering
et al. (2018) and led there to an overall agreement of about
97 %. Moreover, an internal misclassification rate of 1.13 %
can be expected after performing a 10-fold cross validation
(Passaro et al., 2020).

The main input to the classification approach is parameters
derived from the waveform shapes and information on the
backscatter power. Altogether, they span the feature space,
which is defined as follows (see Dettmering et al., 2018):

– Maximum power (MP) – physical backscatter coeffi-
cient σ0 at the waveform maximum

– Waveform width (Wwidth) – number of waveform range
bins with a power greater than 1 % of the waveform
maximum
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Figure 2. Averages and standard error of six waveform features used per cluster: maximum power (MP), waveform width (Wwidth), leading-
edge slope (LES), trailing-edge slope (TES), waveform decay (Wdecay), and median absolute deviation of fitted waveforms (WfitMAD).
Colours indicate five different surface types: undefined (brown), sea ice (yellow), thin ice (orange), lead (cyan), and ocean (blue).

– Leading-edge slope (LES) – number of waveform range
bins between the position of the waveform maximum
and the bin of the leading edge, which is the first ex-
ceeding 12.5 % of the maximum power

– Trailing-edge slope (TES) – similar to LES but for the
trailing edge of the waveform

– Waveform decay (Wdecay) – estimation of the decay by
fitting an exponential function to the trailing edge

– Waveform fit median absolute deviation (WfitMAD) –
derived MAD value of the residuals from the fit of the
exponential function.

Moreover, in the quantitative comparison (Sect. 4.2) two
additional features are included. The additional features are

part of the CryoSat-2 waveform classification approach (Paul
et al., 2018) applied in the framework of ESA CCI:

– Leading-edge width (LEW) – width in range bins be-
tween 95 % and the first bin at the leading edge exceed-
ing 5 % of the waveform maximum power using a 10-
time oversampled and smoothed waveform (Hendricks
et al., 2021)

– Leading-edge peakiness (LEP) – computation of the
pulse peakiness (Peacock and Laxon, 2004) but with
three range bins left from the bin position of the wave-
form maximum (Ricker et al., 2014).

Figure 2 shows the assignment of 25 clusters to 5 differ-
ent surface types (compared to 4 in the original UWC ap-
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proach): undefined, sea ice, thin ice, lead, and ocean. Clus-
ters characterized by a very strong MP, a small Wwidth,
and strong decay obtained by the fitting of an exponential
function to the trailing edge of the waveform are labelled as
lead clusters (i.e. 5, 10, 14). Clusters that were formerly as-
signed to sea ice are now divided into two groups (sea ice
and thin ice) based on their different reflective properties.
Following Ulander et al. (1995) and Onstott and Shuchman
(2004) thin ice covers nilas and young ice ranging from 0 to
0.30 m and is often covered by a flat layer of slush, which
is ice crystals saturated with salt brine. Members of thin-
ice clusters show characteristics in between lead clusters and
clear sea-ice groups. They are characterized by a wider wave-
form shape, a weaker waveform decay, and a flatter trailing-
edge slope than lead clusters. Moreover, they also have a
slightly weaker MP than radar returns reflected from open,
calm water (Zygmuntowska et al., 2013). These properties
correspond to clusters 4 and 19.

Undefined waveform clusters represent waveforms which
cannot assigned unambiguously to certain surface condi-
tions, for example if they are acquired in the direct vicinity
of the coast or islands. They also show a bigger standard de-
viation compared to other clusters.

3.2 MODIS thin-ice-thickness retrieval

In order to compute the thin-ice thickness (TIT) from
MODIS IST a simple surface energy balance model is em-
ployed, which utilizes the inversely proportional relation be-
tween IST and the thickness of thin sea ice (Yu and Rothrock,
1996; Drucker et al., 2003). In the model, the net positive
flux towards the atmosphere (i.e. positive corresponding to
the direction from the warm ocean to the cold atmosphere)
is equalized from the conductive heat flux through the ice.
From this conductive heat flux, TIT is derived following
Eq. (1), where TIT is the thin-ice thickness; κi is the thermal
conductivity of sea ice (2.03 W (mK)−1); IST and Tfp are the
IST and the ice–ocean interface temperature (assumed to be
at the freezing point of the ocean), respectively; and Qatm is
the total heat flux to the atmosphere.

TIT= κi ×
IST− Tfp

Qatm
(1)

A detailed description of the TIT retrieval procedure as
well as all necessary equations and related assumptions are
thoroughly described in Paul et al. (2015). These assump-
tions comprise the following: sea ice that is free of snow
cover, a linear temperature gradient within the sea ice, a neg-
ligible ocean-heat flux, and cloud-free conditions assured by
manual screening of all used MODIS swaths (Paul et al.,
2015). While no state-of-the-art uncertainty analysis is avail-
able for our combination of MODIS thin-ice retrieval with
ERA5 atmospheric reanalysis, Adams et al. (2012) state an
average uncertainty of ±4.7 cm for ice thicknesses between
0.0 and 0.2 m using the NCEP2 reanalysis (National Cen-

ters for Environmental Prediction; Kalnay et al., 1996), sub-
stantially increasing for larger thickness ranges. Figure 3
exemplifies the underlying IST with its corresponding TIT.
With regard to these uncertainty limitations in combination
with the desire to maximize CryoSat-2/MODIS overlaps, all
TIT analyses are limited to a maximum sea-ice thickness of
25 cm.

4 Results and discussion

In this study, a combination of 161 MODIS swaths cov-
ering the Laptev Sea area showing TIT up to 25 cm and
about 21 300 classified CryoSat-2 observations are used
for a quantitative analysis. The very high-spatiotemporal-
resolution altimetry observations are related to the respective
MODIS pixels using a nearest-neighbour approach. More-
over, Sentinel-1A/B SAR images serve as an additional
source for visual comparisons. The first part of this section
shows visual comparisons between CryoSat-2 and MODIS
as well as Sentinel-1. The second part (Sect. 4.2) will then
focus on a quantitative analysis of the results. In the last part,
Sect. 4.3 briefly evaluates the representation of thin-ice class
waveforms in other CryoSat-2-based products (Paul et al.,
2018) compared to the unsupervised classification approach.

A direct comparison to SMOS-derived sea-ice thicknesses
(Tian-Kunze et al., 2014) is of limited use due to (i) it being
an average daily ice-thickness product on a spatial resolu-
tion of 12.5km× 12.5km and (ii) the product’s setup with
its use of a statistical log-normal ice-thickness distribution
(Tian-Kunze et al., 2014). The latter results in the real level-
ice thickness being more likely about half of the shown num-
bers. However, this renders this data set unusable for the pur-
pose of this study as the actual ice thickness of thin sheet ice
is needed for the comparison to the high-resolution CryoSat-
2 data (Fig. A1).

4.1 Visual comparison

This section provides an initial visual intercomparison be-
tween CryoSat-2 classified open-water lead, thin-ice, and
sea-ice observations on the one hand and either MODIS (Ta-
ble A1) or Sentinel-1A/B SAR imagery (Table A2) on the
other hand.

Figure 4 shows four subsets of two HH-polarized SAR
images from February 2018 with their respective classifi-
cation results from CryoSat-2 superimposed on them. Both
SAR images feature at least one lead, which is recognized by
the classification algorithm and highlighted by the cyan dots.
Orange labels indicate thin-ice observations in the vicinity
of leads and correspond to higher SAR backscatter values.
Within the image, the areas appearing in light grey to almost
white with their lead-like pattern represent former open-
water areas that have recently frozen over. These areas of
new ice can range in thickness from 10 to 30 cm (Onstott and
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Figure 3. Example of MODIS ice-surface temperature (IST in K; a) and its associated thin-ice thickness (TIT; b) between 0 and 0.25 m, as
acquired on 5 March 2011 at 18:10 UTC.

Figure 4. Examples of classified CryoSat-2 observations versus HH-polarized Sentinel-1B (a, b) and Sentinel-1A (c, d) snapshots from
February 2018 with acquisition time gaps of about 2 and 1 min, respectively. Orange markers show thin-ice classifications. Leads are labelled
in cyan, and sea ice is in yellow. Figures are north-oriented.

Shuchman, 2004) and are often covered by a layer of slush
(Ulander et al., 1995). The CryoSat-2 classification results
agree reasonably well with the SAR images; however, not
all thin-ice surfaces and leads are always correctly detected
(e.g. Fig. 4c and d). Potential reasons for this are two-fold:

from the SAR point of view, a complete interpretation of the
SAR pixel values is not possible. From the altimetry point of
view, off-nadir effects, such as when a dominant and specu-
lar lead is not in the nadir direction, may overlay clear leads
or thin-ice radar echoes, which hence prevents clear identi-
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Figure 5. Examples of classified CryoSat-2 observations versus MODIS TIT acquired in January 2014 (a, b) and January 2017 (c, d),
respectively. The left side (a, c) shows an overview, whereas a detailed view, indicated by the purple rectangle, is given on the right side
(b, d). Orange markers show thin-ice classifications. Leads are labelled in cyan, and sea ice is in yellow. Figures are north-oriented.

fication, in particular if the lead or thin-ice surface is very
small, i.e. less then 1 % of the illuminated surface (Drinkwa-
ter, 1991). These off-nadir effects can become noticeable in
the waveform by the appearance of further dominant peaks in
the backscatter signal, which later can lead to deviations in
the height determination if a retracking algorithm specially
modified for this problem is not used (see e.g. Quartly et al.,
2019). Since the observations are very close together in time,
differences due to ice movement or over-freezing can be ex-
cluded.

A visual comparison between MODIS TIT estimates and
thin-ice-assigned CryoSat-2 radar echoes are provided by
Fig. 5. The sets of images were recorded in January 2014 and
2017, respectively. White areas in the north indicate either a
lack of data due to present cloud cover or an ice-thickness
estimate above 25 cm. Towards the south, thin-ice areas are

bounded by either the coast line and/or the extensive pres-
ence of landfast sea ice (Preußer et al., 2019; Selyuzhenok
et al., 2015; Dmitrenko et al., 2005). Northwards, leaving
the respective coastline or fast-ice edges, MODIS TIT fea-
tures a rather steady increase. The respective CryoSat-2 clas-
sification generally agrees with respect to the MODIS TIT,
showing primarily lead and thin-ice classifications. Quali-
tatively, the respective classifications appear within expec-
tations, in particular with lead classifications close to the
coastline- or fast-ice-associated ice edge in the south, where
the sea ice is thinnest, and thin-ice classifications further
north, where MODIS features thicker thin-ice estimates (see
Fig. 5c and d). However, in most cases a direct distinction
between thicker sea-ice and thin-ice areas is not possible due
to the coarse pixel resolution of MODIS and the variabil-
ity in ice thickness within a MODIS pixel in comparison to
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Figure 6. Examples of classified CryoSat-2 observations versus MODIS TIT (a) and Sentinel-1A SAR (b) for the same location within a
time gap of 7 min (MODIS) and 24 min (Sentinel-1A) with respect to CryoSat-2, respectively. Orange markers show thin-ice classifications.
Leads are labelled in cyan, and sea ice is in yellow. Red dots indicate an undefined classification. Figures are north-oriented.

CryoSat-2 which leads to the fact that one MODIS TIT pixel
can contain up to three CryoSat-2 observations. Neverthe-
less, a general connection between thin-ice-labelled radar re-
turns in the direct vicinity of thin sea ice can be recognized.
This relationship is investigated more deeply using the full
MODIS database.

Figure 6 displays a CryoSat-2, MODIS, and Sentinel-1A
comparison from 1 March 2018 featuring acquisition time
gaps less than 17 min (more details can be found in the Ap-
pendix). This gives the very rare opportunity to analyse ob-
servations of all three sensors within a 30 min time frame.
It shows the different behaviour and dependencies of opti-
cal and microwave sensors with respect to different sea-ice
surfaces and their physical properties (e.g. surface rough-
ness). The scene shows very thin ice close to the landfast-ice
edge near Taymyr in the northeastern part of the Laptev Sea
region (Dmitrenko et al., 2005; Selyuzhenok et al., 2015).
The polynya observed by MODIS appears very bright in the
SAR image and is likely caused by a high sea-ice surface
roughness, potentially due to e.g. the presence of frost flow-
ers (Hollands and Dierking, 2016; Dierking, 2013) or sur-
face waves. In contrast to the impact this has on the side-
looking SAR, the increase in diffuse surface scattering re-
sults in a wider waveform with smaller peak power for the
nadir-looking CryoSat-2. We note here that this change in
waveform properties can be caused by a change in roughness
at the radar wavelength scale or large scales, e.g. by ice de-
formation. It is unlikely that larger areas covered solely by
thin sheet ice have significant surface height variability or a
considerable snow layer. It has been shown by Landy et al.
(2020) that the increase in radar scale roughness can signifi-

cantly affect CryoSat-2 waveform shape even for comparably
flat surfaces when incoherent backscatter from radar scale
roughness is taken into account. This effect may be so pro-
nounced that several waveforms are assigned to the sea-ice
category in an area where the SAR image indicates the pres-
ence of thin ice only. However, the low-backscatter region to
the southeast (dark in the SAR image) featuring very thin ice
is labelled correctly again as lead. While the CryoSat-2 un-
supervised classification performs well in general, it was pri-
marily developed to identify open water within sea-ice con-
ditions. Hence, a clear distinction between thin and thick sea
ice is not always possible due to a high variability in the sur-
face roughness of thin ice. This comparison showcases how
substantially the sea-ice surface can vary within small spa-
tial scales but at the same time the potential and synergies
for sea-ice investigations that lie within these multi-sensor
collocations.

4.2 Quantitative analysis

For the quantitative analysis, a total of about 21 300 CryoSat-
2 observations are compared with MODIS TIT observations
in the Laptev Sea for the winter months January through
March between 2011 and 2020. This corresponds to about
4 % of the theoretically available matched MODIS versus
CryoSat-2 along-track observations (total circa: 540 000).
The small percentage of matches used is explained by (1) the
frequent presence of cloud cover in the Arctic and (2) the
availability of large flaw polynya openings with correspond-
ing thin-ice surfaces, which occur near the landfast-sea-ice
edge.
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Figure 7. Waveform-derived shape and power features from an unsupervised classification plus two external features of leading-edge width
(LEW; Hendricks et al., 2021) and leading-edge peakiness (LEP; Ricker et al., 2014) with respect to different TIT categories. Shown are the
averaged feature values (blue dotted circles) and the corresponding standard derivation (grey bar) per TIT groups of ±2 cm from 2 to 25 cm.
Abbreviations of waveform features used in classification are explained in Fig. 2.

In total, 14 % of all 21 300 classifications were assigned
to thin-ice surfaces and 1 % to leads. The largest proportion
is attributed to thicker sea ice (85 %). With respect to valid
overlaps (i.e. MODIS pixels with TIT information), about
51 % of CryoSat-2 classifications are assigned to open water
and thin ice, while 45 % are assigned to other sea-ice types.
Remaining waveforms are marked as undefined, e.g. due to
the influence of land or instrument errors.

Besides a comparison of the CryoSat-2 classification re-
sults and the TIT from MODIS, the relationship between
waveform-derived backscatter power as well as other wave-
form shape properties and different TIT categories is of pe-
culiar interest. Therefore, the TIT data from MODIS are
grouped into intervals of ±2 cm from 4 to 25 cm. These
groups are then compared to corresponding CryoSat-2 radar
waveforms, in particular, with the six waveform-derived fea-
tures used in the classification and two additional waveform
parameters (i.e. LEW and LEP) listed in Sect. 3.1.

Figure 7 shows the per-bin averages of the eight waveform
features with their respective standard deviations indicated as
grey bars in the background. The Pearson linear correlation
coefficients with respect to the ice thickness are listed in the
Appendix (Table A3). With the exception of LES, there is
a linear (or close to linear) dependency present with respect

to an increasing TIT. This is especially evident in waveform
features MP, Wwidth, and TES that are intended to char-
acterize single-peak waveforms (e.g. radar reflections by a
lead). Despite a very large standard deviation in the thinner-
ice class bins, an increase with rising ice thickness is a phys-
ically explainable behaviour. In general, a rougher surface
corresponds to an increase in surface scattering resulting in a
diminishing return back to the sensor and at the same time an
increase in received off-nadir scattering by the sensor. This
leads to a broadening of the received waveform as well as a
drop in maximum waveform power (e.g. Drinkwater, 1991;
Laxon, 1994) and, therefore, to the observed negative cor-
relation with MP (−0.97) and the positive correlations with
TES (0.94) and Wwidth (0.99). In the case of LES, which is
the number of bins between the first waveform bin reaching
12.5 % and the bin of the waveform’s MP (Dettmering et al.,
2018), a linear relationship cannot be spotted. This might be
due to a larger uncertainty associated with the first two TIT
bins and their in general lower occurrence rates compared
the thicker thin-ice bins or higher uncertainties in the LES
processing related to very steep leading edges. Only the lat-
ter part, starting with the ±12 cm bin, features the expected
behaviour. The remaining four waveform features, i.e. Wde-
cay, WfitMAD, LEW, and LEP, feature an apparent corre-
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lation; however, it is less clear than the ones we observed
with MP, Wwidth, and TES. Similar to TES, physically one
would expect a slower/smaller decay with an increase in sur-
face roughness and therefore sea-ice thickness as well as an
increase in the width of the leading edge (LEW; Landy et
al., 2019) from thinner to thicker ice classes. In contrast, the
LEP is expected to decrease with an increasing LEW going
along with an increase in surface roughness. The median ab-
solute deviation from the exponential fit to the waveforms is
also decreasing for broader waveforms that result from addi-
tionally received backscatter from off-nadir areas due to an
increased surface roughness leading to a strong negative cor-
relation of −0.97.

Nevertheless, this comparison provides information on
how different thin-ice scenarios affect the altimeter wave-
form. The shown dependencies between TIT and derived
waveform parameters can be used e.g. to adapt and optimize
altimeter waveform classifiers to thin-ice conditions and sub-
sequently improve the sea-ice freeboard estimation in areas
of frequently present thin ice.

4.3 Classification comparison

We compare the surface type classification with the CryoSat-
2 surface classification described in Paul et al. (2018) to as-
sess how thin-ice class waveforms are represented in other
CryoSat-2-based products. The classification by Paul et al.
(2018) was developed for the CryoSat-2 contribution to the
sea-ice-thickness data record of the ESA Climate Change Ini-
tiative (Hendricks et al., 2018), hereafter named the CCI clas-
sification. The algorithm is also used in the Alfred Wegener
Institute (AWI) CryoSat-2 sea-ice product v2.4 (Hendricks
et al., 2021) which provides the necessary temporal coverage
for this study. We use Level-2 intermediate (l2i) data, which
provides the surface type flag for full-resolution orbit data for
the months of October through April from November 2010
to April 2021 for the Arctic Laptev Sea regions (Fig. 1). The
flags in the l2i files are based on monthly thresholds for the
backscatter coefficient sigma0, the LEW, and pulse peakiness
as well as supported by sea-ice concentration data (OSI-450
and OSI-430-b of the Ocean and Sea Ice Satellite Applica-
tion Facility; OSI SAF, 2020) as a sea-ice mask. The sur-
face types used in Paul et al. (2018) are comparable to this
study except for the missing thin-ice class and the fact that
the ocean-waveform classification solely depends on the sea-
ice mask and existing land/ocean flags.

The surface type classification is based on approximately
26.5× 106 waveforms. The CCI classification lists 50.2 %
of these in the sea-ice category, 10.9 % in the lead cate-
gory, 38.7 % in the unknown category, and less then 0.1 %
in the ocean category (Fig. 8a). Compared to the CCI classi-
fication, the unsupervised waveform classification algorithm
(UWC) of this study has more sea-ice (79.7 %,+29.2 %) and
ocean (3.9 %, +3.89 %) waveforms, as well as fewer lead
type (1.9 %, −9 %) and unknown (i.e. undefined) waveforms

(1.4 %, −37.3 %) in addition to the 13.0 % thin-ice wave-
forms (Fig. 8b). The classification matrix (Fig. 8c) shows that
the UWC thin-ice waveforms are mostly distributed in CCI
unknown (46.3 %) and CCI lead (53.4 %) surface types with
a negligible contribution of CCI sea-ice waveforms (0.3 %).
UWC lead classifications are almost exclusively (96.8 %) in
the CCI lead class, showing a good agreement in the identi-
fication of open-water leads. UWC sea-ice classification not
only has a good agreement with CCI sea-ice classifications
(61.9 %) but also includes waveforms the CCI algorithm la-
bels as unknown (35.6 %).

Between the two surface type classifications algorithms,
the UWC results in far fewer unknown/undefined waveforms
than the CCI algorithm and, thus, provides more usable infor-
mation for sea-ice freeboard and thickness retrieval. The dis-
tinction of leads and thin ice by the UWC algorithm, which
are partly seen as leads in the CCI algorithm, reduces the
number of sea-surface height observations but increases their
reliability. It should be noted that we define a lead here in the
sense of satellite altimetry as an open-water lead, which pro-
vides a true sea-surface height observation without any bias
introduced by thin-ice freeboard. The sea-ice-thickness bias
introduced by using thin-ice freeboard as sea-surface height
on the surrounding sea ice is of the order of the TIT itself
and with a maximum of 25 cm a significant fraction of typ-
ical first-year ice thickness. The fact that the CCI algorithm
labels a significant portion of the UWC thin-ice waveforms
as unknown demonstrates that these were rightfully excluded
from either lead or sea-ice class. The latter sea-ice class is
treated as an ice surface, for which range corrections for the
full climatological snow cover are applied, which would also
result in range biases. The distinction between open-water
lead and thin-ice classes, therefore, introduces the possibility
of improving both the sea-surface height and radar freeboard
retrieval.

Finally, it must be noted that the official definition of
the World Meteorological Organization (WMO) for the term
lead includes thin ice with a thickness of up to 30 cm (WMO,
2014). To obtain lead fractions according the WMO defini-
tion or to compare lead fractions with other remote-sensing
data, the thin-ice class may be added to the open-water lead
class.

5 Summary and outlook

In the context of an increasing number of open-water areas
and sea-ice thinning, which have a major impact on the en-
ergy exchange between the atmosphere and the upper-ocean
layer and on sea-ice dynamics in the Arctic Ocean (e.g. Pers-
son and Vihma, 2017), this study investigated the thin-ice
detection capabilities of CryoSat-2 through comparison of
altimetry-derived thin-ice surface detections and TIT infor-
mation from MODIS thermal-infrared imagery. In addition,
the study benefits from spatially and temporally consistent
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Figure 8. Surface type classification statistics of CryoSat-2 data for the Arctic Laptev Sea region (Fig. 1) for the ESA Climate Change
Initiative (CCI) algorithm described in Paul et al. (2018) (a), the unsupervised waveform classification (UWC) of this study (b), and the
classification matrix (c). The colour coding of the classification matrix and the upper percent values describe the distribution of UWC classes
within CCI classes for each class combination. The lower percent values describe the fraction of the total number of waveforms in the
comparison (> 26× 106) in class combinations. The CCI surface type classification does not contain a thin-ice class.

comparisons of three different remote-sensing techniques for
continuous monitoring of the Arctic Ocean.

An unsupervised waveform classification approach
(Dettmering et al., 2018; Müller et al., 2017), mainly
developed to identify open-water targets such as leads
and polynyas within the otherwise ice-covered ocean, is
adopted to distinguish thin ice from water and thicker ice.
Here, waveform clusters have been assigned to be of the
thin-ice type due to their resemblance to lead type CryoSat-2
waveform echoes but with less distinctness. These labelled
CryoSat-2 observations are compared to thin-ice estimates
up to 25 cm of thickness derived from MODIS thermal
imagery (Paul et al., 2015), to Sentinel-1 SAR images, and
to an external classification approach (Paul et al., 2018;
Hendricks et al., 2021).

A visual comparison shows good agreement between the
classified CryoSat-2 altimeter data and both the Sentinel-
1A/B SAR images as well as the MODIS-derived thin-ice

areas despite different spatial resolutions as well as the vary-
ing delay in acquisition times between all sensors. How-
ever, especially the interpretation of the SAR images without
ground-truth validation can be challenging in thin-ice areas
due to a large variety of present surface conditions ranging
from smooth or slushy areas (with low-backscatter returns)
to areas covered with frost flowers (with high-backscatter re-
turns). The latter also affects the CryoSat-2 radar reflections,
since higher surface roughness conditions result in a more
sea-ice-like waveform shape with increased noise, higher
variability, and weaker peak power as well as less peakiness.
This potentially results in a sea-ice group assignment. De-
spite the substantial difference in spatial resolution between
CryoSat-2 and MODIS, the majority of lead- and thin-ice-
assigned CryoSat-2 observations are located in regions with
very thin ice. In the case of SAR data, CryoSat-2 can help
to bring thin-ice and lead type information to a larger scale
without the need to deal with substantial amounts of data and
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complicated processing chains. With regards to MODIS, the
CryoSat-2 thin ice and lead type can help to identify sub-
pixel scale information from MODIS that results from spec-
tral mixing of different surfaces within a single pixel.

A quantitative comparison of the CryoSat-2 waveform-
derived shape and power features and MODIS-derived TIT
shows a strong linear dependency with increasing TIT, a
finding that can be exploited for directly estimating sea-ice
thickness in a thickness regime where the freeboard-based
approach lacks sensitivity. At a minimum it brings the op-
portunity to use this information for adjusting retracker al-
gorithms, such as for example the threshold first-maximum
retracker algorithm (TFMRA; Helm et al., 2014), to thin-
ice conditions and to modify assumptions of snow cover in
these cases. It is also feasible that the obtained information
can help to develop a correction term for altimeter ranges
for thin-ice waveforms based on the estimated thickness and
well-known density of young sea ice for precise sea-level es-
timation in thin-ice leads and open-water leads alike. More-
over, to enable further Arctic climate-relevant investigations
using altimetry data, the presented classification of thin ice
can be extended to the entire Arctic Ocean including its
peripheral seas and marginal ice zone to produce maps of
altimetry-derived thin-ice coverage.

Appendix A

Figure A1. MODIS ice-surface temperature (IST in K; a) and its associated thin-ice thickness (TIT; b) between 0 and 0.25 m and SMOS
sea-ice thickness (Tian-Kunze et al., 2014) between 0 and 1.5 m (c) as well as between 0 and 0.25 m (d), respectively. A green rectangle
highlights the remaining thin-ice areas in (d). Image data acquired on 5 March 2011 as shown in Fig. 3 with a different colour map.
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Table A1. MODIS scenes shown in Figs. 5 and 6 and record date and time difference (1t) to CryoSat-2 observations in minutes (absolute
value).

MODIS ID Record date 1t [min]

MOD03.A2014022.1250.061.2017308004553 2014-01-22 8.5
MYD03.A2017031.1730.061.2018029032056 2017-01-31 9.3
MYD03.A2018060.2300.061.2018061160404 2018-03-01 6.9

Table A2. SAR images shown in Figs. 4 and 6 and record date and time difference (1t) to CryoSat-2 observations in minutes (absolute
value).

SAR image ID Record date 1t [min]

S1B_EW_GRDM_1SDH_20180211T231533_20180211T231633_009582_01143A_7062 2018-02-11 1
S1A_EW_GRDM_1SDH_20180218T221829_20180218T221929_020667_02365D_58AE 2018-02-18 2
S1A_EW_GRDM_1SDH_20180301T231607_20180301T231707_020828_023B73_E32D 2018-03-01 24

Table A3. Pearson linear correlation coefficients between features and thin-ice thickness (Fig. 7). Features: maximum power (MP), waveform
width (Wwidth), LES (leading-edge slope), TES (trailing-edge slope), Wdecay (Waveform decay), WfitMAD (median absolute deviation of
fitted waveform), LEW (leading-edge width), and LEP (leading-edge peakiness).

Feature MP Wwidth LES TES Wdecay WfitMAD LEW LEP

Correlation −0.96 0.99 0.30 0.94 0.94 −0.97 0.92 −0.94

Data availability. CryoSat-2 L1B Baseline-D data
(https://doi.org/10.5270/cr2-2cnblvi; ESA, 2019) are freely
available from the CryoSat-2 science server at https://science-pds.
cryosat.esa.int/#Cry0Sat2_data/Ice_Baseline_D/SIR_SAR_L1
(last access: 14 February 2023). ESA Copernicus Sentinel-
1A/B Level-1 data are publicly available from the ASF
DAAC (https://search.asf.alaska.edu/; ESA, 2023). MODIS
Level-1B-calibrated radiances obtained from the MODIS
sensors on board the polar-orbiting NASA satellites
Terra (http://dx.doi.org/10.5067/MODIS/MOD021KM.061;
MCST, 2017b) and Aqua (http://dx.doi.org/10.5067/MODIS/
MYD021KM.061; MCST, 2017a) are freely available from
the Level-1 and Atmosphere Archive and Distribution Sys-
tem (LAADS) Distributed Active Archive Center (DAAC) at
https://ladsweb.modaps.eosdis.nasa.gov/ (last access: 14 Febru-
ary 2023).

Sample availability. The MODIS image IDs of the comparisons
can be given out in a list upon request.
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